Đặt $t = \dfrac{a}{b} + \dfrac{b}{a} \overset{AM-GM}{\geqslant} 2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}} = 2$
$\implies t^2 = \dfrac{a^2}{b^2} + 2 + \dfrac{b^2}{a^2}$
$\iff t^2 - 2 = \dfrac{a^2}{b^2} + \dfrac{b^2}{a^2}$
Bài toán trở thành : Cho $t \geqslant 2$. CMR :
$t^2-2 \geqslant t$
bđt $\iff t^2 - t - 2 \geqslant 0$
$\iff (t+1)(t-2) \geqslant 0$
Do $t \geqslant 2 \implies \left\{ \begin{array}{l} t+1 > 0 \\ t-2 \geqslant 0 \end{array} \right.$
$\implies (t+1)(t-2) \geqslant 0$
Vậy $t^2-2 \geqslant t$
$\implies$ đpcm