Cách khác:
( a + b ) ( b + c ) ( c + a ) = 1 (a+b)(b+c)(c+a)=1 ( a + b ) ( b + c ) ( c + a ) = 1
⟺ ( a + b + c ) ( a b + b c + c a ) − a b c = 1 \iff (a+b+c)(ab+bc+ca)-abc=1 ⟺ ( a + b + c ) ( a b + b c + c a ) − a b c = 1
⟺ a b + b c + c a = a b c + 1 a + b + c \iff ab+bc+ca =\dfrac{abc+1}{a+b+c} ⟺ a b + b c + c a = a + b + c a b c + 1
Ta có: ( a + b ) ( b + c ) ( c + a ) ≥ 2 a b . 2 b c . 2 c a = 8 a b c (a+b)(b+c)(c+a) \ge 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc ( a + b ) ( b + c ) ( c + a ) ≥ 2 a b . 2 b c . 2 c a = 8 a b c
⟺ 1 ≥ 8 a b c \iff 1 \ge 8abc ⟺ 1 ≥ 8 a b c
⟺ a b c ≤ 1 8 \iff abc \le \dfrac{1}{8} ⟺ a b c ≤ 8 1
Ta có: a + b + c ≥ 3 2 a+b+c \ge \dfrac{3}{2} a + b + c ≥ 2 3 (chứng minh như cách ở trên)
⟹ a b + b c + c a = a b c + 1 a + b + c ≤ 1 8 + 1 3 2 = 3 4 \Longrightarrow ab+bc+ca =\dfrac{abc+1}{a+b+c} \le \dfrac{\dfrac{1}{8}+1}{\dfrac{3}{2}} =\dfrac{3}{4} ⟹ a b + b c + c a = a + b + c a b c + 1 ≤ 2 3 8 1 + 1 = 4 3
Last edited by a moderator: 24 Tháng bảy 2015