Chứng minh bất đẳng thức

V

vy000

Cần thêm a,b,c là 3 số thực dương

$\dfrac{a^3}{b+c} + \dfrac{a(b+c)}4 \ge a^2 \\ \dfrac{b^3}{c+a} + \dfrac{b(c+a)}4 \ge b^2 \\ \dfrac{c^3}{a+b}+\dfrac{c(a+b)}4 \ge c^2$

\Rightarrow $\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}+\dfrac{ab+bc+ca}2 \ge a^2+b^2+c^2$

\Rightarrow $\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a} \ge \dfrac{a^2+b^2+c^2}2$
 
N

nttthn_97

$\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}=\dfrac{a^4}{a(b+c)}+\dfrac{b^4}{b(a+c)}+\dfrac{c^4}{c(a+b)}$

[TEX]\geq[/TEX]$\dfrac{(a^2+b^2+c^2)^2}{2(ab+bc+ca)}$[TEX]\geq[/TEX]$\dfrac{a^2+b^2+c^2}{2}$

( BĐT Schwartz)
 
Top Bottom