$(a^2+b^2)(a^4+b^4) \geq (a^3+b^3)^2$
$\Leftrightarrow a^6+b^6+a^4b^2+a^2b^4 \geq a^6+2a^3b^3+b^6$
$\Leftrightarrow a^4b^2-2a^3b^3+a^2b^4 \geq 0$
$\Leftrightarrow (a^2b-ab^2)^2 \geq 0$ ( luôn đúng )
Vậy, $(a^2+b^2)(a^4+b^4) \geq (a^3+b^3)^2$
$2(a^4+b^4) \geq (a+b)(a^3+b^3)$
$\Leftrightarrow 2(a^4+b^4) \geq a^4+b^4+a^3b+ab^3$
$\Leftrightarrow a^4-a^3b-ab^3+b^4 \geq 0$
$\Leftrightarrow a^3(a-b)-b^3(a-b) \geq 0$
$\Leftrightarrow (a-b)(a^3-b^3) \geq 0$
$\Leftrightarrow (a-b)^2(a^2+ab+b^2) \geq 0$
$\Leftrightarrow (a-b)^2(a^2+ab+\frac{1}{4}b^2+\frac{3}{4}b^2) \geq 0$
$\Leftrightarrow (a-b)^2[(a+\frac{1}{2}b)^2+\frac{3}{4}b^2 \geq 0$ ( luôn đúng )
Vậy, $2(a^4+b^4) \geq (a+b)(a^3+b^3)$