d)
$BK \perp AB$ và $AC \perp AB$
Suy ra : $BK // AC$
Xét $\Delta BHK \sim \Delta CHA$ (g - g)
Suy ra : $\dfrac{CH}{HB} = \dfrac{AH}{HK}$
$\dfrac{CH}{HB} + 1 = \dfrac{AH}{HK} + 1$
$\dfrac{BC}{BH} = \dfrac{AK}{HK}$
$\dfrac{BH}{BC} = \dfrac{HK}{AK}$
Ta có : $\dfrac{HM}{BK} = \dfrac{AH}{AK}$
$\dfrac{HM}{AC} = \dfrac{BH}{BC} = \dfrac{HK}{AK}$
Suy ra : $\dfrac{HM}{BK} + \dfrac{HM}{AC} = \dfrac{AH}{AK} + \dfrac{HK}{AK} = 1$
Hay $\dfrac{HM}{BK} + \dfrac{HM}{AC} = 1$
Suy ra : $\dfrac{1}{BK} + \dfrac{1}{AC} = \dfrac{1}{HM}$