Toán 9 Cho x,y,zx,y,z dương x+y+z=6x+y+z=6

shorlochomevn@gmail.com

Học sinh tiến bộ
Thành viên
15 Tháng chín 2018
847
2,251
256
Bắc Ninh
trường THCS Song Liễu
Cho x,y,z dương x+y+z=6
Tìm min P=x^3/√(2y^2+7yz+3z^2)+y^3/√(2z^2+7xz+3x^2)+z^3/√(2x^2+7xy+3y^2)
x32y2+7yz+3z2=x32y2+yz+6yz+3z2=x3y.(2y+z)+3z.(2y+z)=x3(2y+z).(3z+y)x3(2y+z).(3z+y)+232.2y+z+16.3z+y3x3.1333+,2y+z.62y+z+62=>2y+z2y+z+626+,3z+y.223z+y+82=>3z+y3z+y+842=>x3(2y+z).(3z+y)3x13232.2y+z16.3z+y3x13232.2y+z+62616.3z+y+842=3x132y+z+663(3z+y+8)83=>P313.(x+y+z)163.[3.(x+y+z)+6.3]183.[4.(x+y+z)+8.3]=>P1836363=23\frac{x^3}{\sqrt{2y^2+7yz+3z^2}}=\frac{x^3}{\sqrt{2y^2+yz+6yz+3z^2}}=\frac{x^3}{\sqrt{y.(2y+z)+3z.(2y+z)}}\\\\ =\frac{x^3}{\sqrt{(2y+z).(3z+y)}}\\\\ \frac{x^3}{\sqrt{(2y+z).(3z+y)}}+\frac{2}{3\sqrt{2}}.\sqrt{2y+z}+\frac{1}{\sqrt{6}}.\sqrt{3z+y}\geq 3\sqrt[3]{x^3.\frac{1}{\sqrt{3^3}}}\\\\ +, \sqrt{2y+z}.\sqrt{6}\leq \frac{2y+z+6}{2}=> \sqrt{2y+z}\leq \frac{2y+z+6}{2\sqrt{6}}\\\\ +,\sqrt{3z+y}.2\sqrt{2}\leq \frac{3z+y+8}{2}=> \sqrt{3z+y}\leq \frac{3z+y+8}{4\sqrt{2}}\\\\ => \frac{x^3}{\sqrt{(2y+z).(3z+y)}}\geq 3x\frac{1}{\sqrt{3}}-\frac{2}{3\sqrt{2}}.\sqrt{2y+z}-\frac{1}{\sqrt{6}}.\sqrt{3z+y}\\\\ \geq 3x\frac{1}{\sqrt{3}}-\frac{2}{3\sqrt{2}}.\frac{2y+z+6}{2\sqrt{6}}-\frac{1}{\sqrt{6}}.\frac{3z+y+8}{4\sqrt{2}}\\\\ =3x\frac{1}{\sqrt{3}}-\frac{2y+z+6}{6\sqrt{3}}-\frac{(3z+y+8)}{8\sqrt{3}}\\\\ => P\geq 3\frac{1}{\sqrt{3}}.(x+y+z)-\frac{1}{6\sqrt{3}}.[3.(x+y+z)+6.3]-\frac{1}{8\sqrt{3}}.[4.(x+y+z)+8.3]\\\\ => P\geq \frac{18}{\sqrt{3}}-\frac{6}{\sqrt{3}}-\frac{6}{\sqrt{3}}=2\sqrt{3}\\\\
dấu "=" <=> x=y=z=2
 

NikolaTesla

Học sinh chăm học
Thành viên
29 Tháng một 2019
273
102
86
Nghệ An
THCS
x32y2+7yz+3z2=x32y2+yz+6yz+3z2=x3y.(2y+z)+3z.(2y+z)=x3(2y+z).(3z+y)x3(2y+z).(3z+y)+232.2y+z+16.3z+y3x3.1333+,2y+z.62y+z+62=>2y+z2y+z+626+,3z+y.223z+y+82=>3z+y3z+y+842=>x3(2y+z).(3z+y)3x13232.2y+z16.3z+y3x13232.2y+z+62616.3z+y+842=3x132y+z+663(3z+y+8)83=>P313.(x+y+z)163.[3.(x+y+z)+6.3]183.[4.(x+y+z)+8.3]=>P1836363=23\frac{x^3}{\sqrt{2y^2+7yz+3z^2}}=\frac{x^3}{\sqrt{2y^2+yz+6yz+3z^2}}=\frac{x^3}{\sqrt{y.(2y+z)+3z.(2y+z)}}\\\\ =\frac{x^3}{\sqrt{(2y+z).(3z+y)}}\\\\ \frac{x^3}{\sqrt{(2y+z).(3z+y)}}+\frac{2}{3\sqrt{2}}.\sqrt{2y+z}+\frac{1}{\sqrt{6}}.\sqrt{3z+y}\geq 3\sqrt[3]{x^3.\frac{1}{\sqrt{3^3}}}\\\\ +, \sqrt{2y+z}.\sqrt{6}\leq \frac{2y+z+6}{2}=> \sqrt{2y+z}\leq \frac{2y+z+6}{2\sqrt{6}}\\\\ +,\sqrt{3z+y}.2\sqrt{2}\leq \frac{3z+y+8}{2}=> \sqrt{3z+y}\leq \frac{3z+y+8}{4\sqrt{2}}\\\\ => \frac{x^3}{\sqrt{(2y+z).(3z+y)}}\geq 3x\frac{1}{\sqrt{3}}-\frac{2}{3\sqrt{2}}.\sqrt{2y+z}-\frac{1}{\sqrt{6}}.\sqrt{3z+y}\\\\ \geq 3x\frac{1}{\sqrt{3}}-\frac{2}{3\sqrt{2}}.\frac{2y+z+6}{2\sqrt{6}}-\frac{1}{\sqrt{6}}.\frac{3z+y+8}{4\sqrt{2}}\\\\ =3x\frac{1}{\sqrt{3}}-\frac{2y+z+6}{6\sqrt{3}}-\frac{(3z+y+8)}{8\sqrt{3}}\\\\ => P\geq 3\frac{1}{\sqrt{3}}.(x+y+z)-\frac{1}{6\sqrt{3}}.[3.(x+y+z)+6.3]-\frac{1}{8\sqrt{3}}.[4.(x+y+z)+8.3]\\\\ => P\geq \frac{18}{\sqrt{3}}-\frac{6}{\sqrt{3}}-\frac{6}{\sqrt{3}}=2\sqrt{3}\\\\
dấu "=" <=> x=y=z=2
Mình ko hiểu 2 dòng này:
upload_2019-10-23_21-0-24.png
 

Hà Thanh kute

Học sinh
Thành viên
10 Tháng tám 2019
292
21
26
22
Cần Thơ
Trường Trung học cơ sở hạ tầng
x32y2+7yz+3z2=x32y2+yz+6yz+3z2=x3y.(2y+z)+3z.(2y+z)=x3(2y+z).(3z+y)x3(2y+z).(3z+y)+232.2y+z+16.3z+y3x3.1333+,2y+z.62y+z+62=>2y+z2y+z+626+,3z+y.223z+y+82=>3z+y3z+y+842=>x3(2y+z).(3z+y)3x13232.2y+z16.3z+y3x13232.2y+z+62616.3z+y+842=3x132y+z+663(3z+y+8)83=>P313.(x+y+z)163.[3.(x+y+z)+6.3]183.[4.(x+y+z)+8.3]=>P1836363=23\frac{x^3}{\sqrt{2y^2+7yz+3z^2}}=\frac{x^3}{\sqrt{2y^2+yz+6yz+3z^2}}=\frac{x^3}{\sqrt{y.(2y+z)+3z.(2y+z)}}\\\\ =\frac{x^3}{\sqrt{(2y+z).(3z+y)}}\\\\ \frac{x^3}{\sqrt{(2y+z).(3z+y)}}+\frac{2}{3\sqrt{2}}.\sqrt{2y+z}+\frac{1}{\sqrt{6}}.\sqrt{3z+y}\geq 3\sqrt[3]{x^3.\frac{1}{\sqrt{3^3}}}\\\\ +, \sqrt{2y+z}.\sqrt{6}\leq \frac{2y+z+6}{2}=> \sqrt{2y+z}\leq \frac{2y+z+6}{2\sqrt{6}}\\\\ +,\sqrt{3z+y}.2\sqrt{2}\leq \frac{3z+y+8}{2}=> \sqrt{3z+y}\leq \frac{3z+y+8}{4\sqrt{2}}\\\\ => \frac{x^3}{\sqrt{(2y+z).(3z+y)}}\geq 3x\frac{1}{\sqrt{3}}-\frac{2}{3\sqrt{2}}.\sqrt{2y+z}-\frac{1}{\sqrt{6}}.\sqrt{3z+y}\\\\ \geq 3x\frac{1}{\sqrt{3}}-\frac{2}{3\sqrt{2}}.\frac{2y+z+6}{2\sqrt{6}}-\frac{1}{\sqrt{6}}.\frac{3z+y+8}{4\sqrt{2}}\\\\ =3x\frac{1}{\sqrt{3}}-\frac{2y+z+6}{6\sqrt{3}}-\frac{(3z+y+8)}{8\sqrt{3}}\\\\ => P\geq 3\frac{1}{\sqrt{3}}.(x+y+z)-\frac{1}{6\sqrt{3}}.[3.(x+y+z)+6.3]-\frac{1}{8\sqrt{3}}.[4.(x+y+z)+8.3]\\\\ => P\geq \frac{18}{\sqrt{3}}-\frac{6}{\sqrt{3}}-\frac{6}{\sqrt{3}}=2\sqrt{3}\\\\
dấu "=" <=> x=y=z=2
Bạn giải giúp mk bài này với
Cm BĐT √a(4a+5b)+√b(4b+5a) <=3(a+b)
 

shorlochomevn@gmail.com

Học sinh tiến bộ
Thành viên
15 Tháng chín 2018
847
2,251
256
Bắc Ninh
trường THCS Song Liễu
Bạn giải giúp mk bài này với
Cm BĐT √a(4a+5b)+√b(4b+5a) <=3(a+b)
A2=(a.(4a+5b)+b.(4b+5a))2(a+b).(4a+5b+4b+5a)=>A29(a+b)2=>A3.(a+b)A^2=(\sqrt{a.(4a+5b)}+\sqrt{b.(4b+5a)})^2\leq (a+b).(4a+5b+4b+5a)\\\\ => A^2\leq 9(a+b)^2\\\\ => A\leq 3.(a+b)
dấu "=" <=> .... <=> a=b
 

shorlochomevn@gmail.com

Học sinh tiến bộ
Thành viên
15 Tháng chín 2018
847
2,251
256
Bắc Ninh
trường THCS Song Liễu
Giúp mk với ạ
Cho x+y=1
Tìm min N=1/(x^3+y^3)+1/xy
N=1x3+y3+1xy=1(x+y)33xy.(x+y)+1xy=113xy+33xy(1+3)213xy+3xy=4+23N=\frac{1}{x^3+y^3}+\frac{1}{xy}\\\\ =\frac{1}{(x+y)^3-3xy.(x+y)}+\frac{1}{xy}\\\\ =\frac{1}{1-3xy}+\frac{3}{3xy}\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=4+2\sqrt{3}
dấu "=" xảy ra <=> 113xy=33xy\frac{1}{1-3xy}=\frac{\sqrt{3}}{3xy}
và x+y=1
bạn tự giải dấu "=" nha... :>
 

Hà Thanh kute

Học sinh
Thành viên
10 Tháng tám 2019
292
21
26
22
Cần Thơ
Trường Trung học cơ sở hạ tầng
Giúp mk với ạ
Giải hệ pt a) 2x^2-x(y-1)+y^2=3y
x^2+xy-3y^2=x-2y
b) x(x^2-y^2)=6y
2y(x^2+y^2)=5x
N=1x3+y3+1xy=1(x+y)33xy.(x+y)+1xy=113xy+33xy(1+3)213xy+3xy=4+23N=\frac{1}{x^3+y^3}+\frac{1}{xy}\\\\ =\frac{1}{(x+y)^3-3xy.(x+y)}+\frac{1}{xy}\\\\ =\frac{1}{1-3xy}+\frac{3}{3xy}\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=4+2\sqrt{3}
dấu "=" xảy ra <=> 113xy=33xy\frac{1}{1-3xy}=\frac{\sqrt{3}}{3xy}
và x+y=1
bạn tự giải dấu "=" nha... :>
 
Top Bottom