[tex]\frac{x^3}{\sqrt{2y^2+7yz+3z^2}}=\frac{x^3}{\sqrt{2y^2+yz+6yz+3z^2}}=\frac{x^3}{\sqrt{y.(2y+z)+3z.(2y+z)}}\\\\ =\frac{x^3}{\sqrt{(2y+z).(3z+y)}}\\\\ \frac{x^3}{\sqrt{(2y+z).(3z+y)}}+\frac{2}{3\sqrt{2}}.\sqrt{2y+z}+\frac{1}{\sqrt{6}}.\sqrt{3z+y}\geq 3\sqrt[3]{x^3.\frac{1}{\sqrt{3^3}}}\\\\ +, \sqrt{2y+z}.\sqrt{6}\leq \frac{2y+z+6}{2}=> \sqrt{2y+z}\leq \frac{2y+z+6}{2\sqrt{6}}\\\\ +,\sqrt{3z+y}.2\sqrt{2}\leq \frac{3z+y+8}{2}=> \sqrt{3z+y}\leq \frac{3z+y+8}{4\sqrt{2}}\\\\ => \frac{x^3}{\sqrt{(2y+z).(3z+y)}}\geq 3x\frac{1}{\sqrt{3}}-\frac{2}{3\sqrt{2}}.\sqrt{2y+z}-\frac{1}{\sqrt{6}}.\sqrt{3z+y}\\\\ \geq 3x\frac{1}{\sqrt{3}}-\frac{2}{3\sqrt{2}}.\frac{2y+z+6}{2\sqrt{6}}-\frac{1}{\sqrt{6}}.\frac{3z+y+8}{4\sqrt{2}}\\\\ =3x\frac{1}{\sqrt{3}}-\frac{2y+z+6}{6\sqrt{3}}-\frac{(3z+y+8)}{8\sqrt{3}}\\\\ => P\geq 3\frac{1}{\sqrt{3}}.(x+y+z)-\frac{1}{6\sqrt{3}}.[3.(x+y+z)+6.3]-\frac{1}{8\sqrt{3}}.[4.(x+y+z)+8.3]\\\\ => P\geq \frac{18}{\sqrt{3}}-\frac{6}{\sqrt{3}}-\frac{6}{\sqrt{3}}=2\sqrt{3}\\\\[/tex]
dấu "=" <=> x=y=z=2