a) Gọi H là trung điểm CD, HC = HD = a
OM = ON → H là trung điểm MN, HM = HN = b
[imath]\begin{rcases} CM = HC - HM = a - b \\ DN = HD - HN = a - b \end{rcases} \rightarrow CM = DN[/imath]
b) Gọi θ là góc COD
[imath]CD = 2r \sin{\cfrac{\theta}{2}} \newline \begin {rcases} MN = \cfrac{CD}{3} = \cfrac{2}{3} r \sin{\cfrac{\theta}{2}} \\ MN = 2OM \sin{\cfrac{90 \degree}{2}} = OM \sqrt{2} \\ \end{rcases} \rightarrow OM = \cfrac{\sqrt{2}}{3} r \sin{\cfrac{\theta}{2}} \newline MH = \cfrac{MN}{2} = \cfrac{1}{3} r \sin{\cfrac{\theta}{2}} \newline CH = \cfrac{CD}{2} = r \sin{\cfrac{\theta}{2}} \rightarrow OH = \sqrt{r^2 - CH^2} = r \sqrt{1 - \sin^2{\cfrac{\theta}{2}}} = r \cos{\cfrac{\theta}{2}} \newline MH^2 + OH^2 = OM^2 \newline \rightarrow \cfrac{r^2}{9} \sin ^2 {\cfrac{\theta}{2}} + r^2 \cos ^2 {\cfrac{\theta}{2}} = \cfrac{2 r^2}{9} \sin ^2 {\cfrac{\theta}{2}} \newline \leftrightarrow 1 - \sin ^2 {\cfrac{\theta}{2}} = \cfrac{1}{9} \sin ^2 {\cfrac{\theta}{2}} \newline \leftrightarrow \sin {\cfrac{\theta}{2}} = \cfrac{3}{\sqrt{10}} \newline \rightarrow OM = \sqrt{\cfrac{1}{5}} \cdot r[/imath]