M
manhnguyen0164


Cho a,b,c đôi một khác nhau. Chứng minh:
a) $\dfrac{a^2}{(b-c)^2}+\dfrac{b^2}{(c-a)^2}+\dfrac{c^2}{(a-b)^2}\ge2$
b) $\dfrac{(a+b)^2}{(a-b)^2}+\dfrac{(b+c)^2}{(b-c)^2}+\dfrac{(c+a)^2}{(c-a)^2}\ge2$
c) $\dfrac{ab}{(a-b)^2}+\dfrac{bc}{(b-c)^2}+\dfrac{ca}{(c-a)^2}\ge\dfrac{-1}{4}$
a) $\dfrac{a^2}{(b-c)^2}+\dfrac{b^2}{(c-a)^2}+\dfrac{c^2}{(a-b)^2}\ge2$
b) $\dfrac{(a+b)^2}{(a-b)^2}+\dfrac{(b+c)^2}{(b-c)^2}+\dfrac{(c+a)^2}{(c-a)^2}\ge2$
c) $\dfrac{ab}{(a-b)^2}+\dfrac{bc}{(b-c)^2}+\dfrac{ca}{(c-a)^2}\ge\dfrac{-1}{4}$