hjx, mình chứng minh đc \leq 8 nek`!
Ta có:
[TEX]\frac{3}{xy+yz+zx} = \frac{6}{2.(xy+yz+zx)}[/TEX]
Mặt khác, ta có:
[TEX] 2.(xy+yz+zx) = (x+y+z)^2 - (x^2+y^2+z^2) = 1-(x^2+y^2+z^2) \leq 1=x+y+z[/TEX]
[TEX] \Rightarrow \frac{2}{x+y+z} \leq \frac{6}{2.(xy+yz+zx)} [/TEX]
[TEX] \Rightarrow \frac{6}{x+y+z} \leq \frac{6}{2.(xy+yz+zx)}[/TEX]
hay [TEX]6 \leq \frac{6}{2.(xy+yz+zx)}[/TEX] (1)
Ta cóa típ:
[TEX] x^2+y^2+z^2= (x+y+z)^2- 2.(xy+yz+zx)= 1 - 2.(xy+yz+zx) \leq 1= x+y+z[/TEX]
[TEX] \Rightarrow \frac{1}{x+y+z} \leq \frac{1}{x^2+y^2+z^2}[/TEX]
[TEX] \Rightarrow \frac{2}{x+y+z} \leq \frac{2}{x^2+y^2+z^2}[/TEX]
hay [TEX]2 \leq \frac{2}{x^2+y^2+z^2} (2)[/TEX]
Từ (1) và (2) \Rightarrow ĐPCM
