c) $E=\dfrac{x+1}{x+\sqrt x+1}=\dfrac{x+\sqrt x+1-\sqrt x}{x+\sqrt x+1}=1-\dfrac{\sqrt x}{x+\sqrt x+1}$.
Ta có: $\sqrt x\ge 0;x+\sqrt x+1>0\Rightarrow \dfrac{\sqrt x}{x+\sqrt x+1}\ge 0$.
$\Rightarrow 1-\dfrac{\sqrt x}{x+\sqrt x+1}\le 1-0=0$.
$\Rightarrow E\le 1$.
Dấu '=' xảy ra khi $x=0$ (TM)
Vậy $E_{max}=1$ khi $x=0$