Rút gọn :
[tex]k, (\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1): (1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1})[/tex]
ĐK: $x>0;y>0;xy\neq 1$
$(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1): (1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1})
\\=\dfrac{(\sqrt{x}+1)(\sqrt{xy}-1)-(\sqrt{xy}+\sqrt{x})(\sqrt{xy}+1)+xy-1}{(\sqrt{xy}+1)(\sqrt{xy}-1)}: \dfrac{xy-1-(\sqrt{xy}+\sqrt{x})(\sqrt{xy}+1)-(\sqrt{x}+1)(\sqrt{xy}-1)}{(\sqrt{xy}+1)(\sqrt{xy}-1)}
\\=\dfrac{x\sqrt{y}-\sqrt{x}+\sqrt{xy}-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}+xy-1}{xy-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}-x\sqrt{y}+\sqrt x-\sqrt{xy}+1}
\\=\dfrac{-2\sqrt x-2}{-2\sqrt{xy}-2x\sqrt y}=\dfrac{-2(\sqrt x+1)}{-2\sqrt {xy}(\sqrt{x}+1)}=\dfrac{1}{\sqrt{xy}}$