ĐK: [tex]-1\leq x\leq 1[/tex]
Đặt [tex]t=\sqrt{1+x}+\sqrt{1-x}\Rightarrow t^2=2+2\sqrt{1-x^2}\Rightarrow \sqrt{1-x^2}=\frac{t^2-2}{2}\Rightarrow 1-x^2=\frac{t^4-4t^2+4}{4}[/tex]
Bất phương trình trở thành: [tex]t\leq \frac{7+\frac{t^4-4t^2+4}{4}}{4}\Rightarrow 4t\leq 7+\frac{t^4-4t^2+4}{4}\Rightarrow 16t\leq 28+t^4-4t^2+4\Rightarrow t^4-4t^2-16t+32\geq 0\Rightarrow (t-2)(t^3+2t^2+4t+16)\geq 0\Rightarrow t\geq 2(vì t\geq 0\Rightarrow t^3+2t^2+4t+16> 0)\Rightarrow \sqrt{1-x}+\sqrt{1+x}\geq 2[/tex]
Mà [tex](\sqrt{1-x}+\sqrt{1+x})^2\leq 2(1+x+1-x)=4\Rightarrow \sqrt{1-x}+\sqrt{1+x}\leq 2\Rightarrow \sqrt{1-x}+\sqrt{1+x}=2\Rightarrow 1+x=1-x\Rightarrow x=0[/tex]