[TEX]22. \ \ \ sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B)=3sinA.sinB.sinC[/TEX]
[TEX]\ \ \ sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B)[/TEX]
[TEX]=sin^2A.sin(B+C)cos(B-C)+sin^2B.sin(A+C)cos(C-A)+sin^2C.sin(A+B).cos(A-B)[/TEX]
[TEX]=\frac{1}{2}sin^2A.(sin2B+sin2C)+\frac{1}{2}sin^2B.(sin2A+sin2C)+\frac{1}{2}sin^2C(sin2A+sin2B)[/TEX]
[TEX]=sin^2A(sinBcosB+sinCcosC)+sin^2B(sinAcosA+sinCcosC)+sin^2C(sinAcosA+sinBcosB)[/TEX]
[TEX]=sinAsinB(sinAcosB+sinBcosA)+sinAsinC(sinAcosC+sinCcosA)+sinBsinC(sinBcosC+sinCcosB)[/TEX]
[TEX]=sinAsinBsin(A+B)+sinAsinCsin(A+C)+sinBsinCsin(B+C)=3sinAsinBsinC[/TEX]
[TEX]23. \ \ \ sin^3Asin(B-C)+sin^3Bsin(C-A)+sin^3Csin(A-B)=0[/TEX]
[TEX]sin^3Asin(B-C)=sin^2A.sin(B+C).sin(B-C)=sin^2A.\frac{1}{2}.(cos2C-cos2B)=sin^2A.\frac{1}{2}(1-2sin^2C-1+2sin^2B)=sin^2A(sin^2B-sin^2C)[/TEX]
Tương tự:
[TEX] \ \ \ sin^3Bsin(C-A)=sin^2B(sin^2C-sin^2A)[/TEX]
[TEX]sin^3Csin(A-B)=sin^2C(sin^2A-sin^2B)[/TEX]
Cộng 2 vế suy ra đpcm
[TEX]24. \ \ \ sin3A.sin^3(B-C)+sin3B.sin^3(C-A)+sin3C.sin^3(A-B)=0[/TEX]
[TEX]sin3A.sin^3(B-C)=\frac{1}{4}sin3A[3sin(B-C)-sin3(B-C)][/TEX]
[TEX]=\frac{3}{4}sin3A.sin(B-C)-\frac{1}{4}sin3A.sin3(B-C)[/TEX]
[TEX]=\frac{3}{8}[cos(3A-B+C)-cos(3A+B-C)]-\frac{1}{8}[cos3(A-B+C)-cos3(A+B-C)][/TEX]
[TEX]=\frac{3}{8}[cos2(A-C)-cos2(A-B)]-\frac{1}{8}[cos6C-cos6B][/TEX]
Chứng minh tương tự với 2 biểu thức kia sau đó cộng 2 vế đc đpcm
[TEX]25. \ \ \ sin3A.cos^3(B-C)+sin3B.cos^3(C-A)+sin3C.cos^3(A-B)=sin3A.sin3B.sin3C.[/TEX]
[TEX]sin3A.cos^3(B-C)=sin3A.\frac{1}{4}.[cos3(B-C)+3cos(B-C)][/TEX]
[TEX]=\frac{1}{4}sin3A.cos3(B-C)+\frac{3}{4}sin3Acos(B-C)[/TEX]
[TEX]=\frac{1}{8}[sin3(A+B-C)-sin3(A-B+C)+\frac{3}{8}[sin(3A+B-C)+sin(3A-B+C)][/TEX]
[TEX]=\frac{1}{8}(sin6C+sin6B)+\frac{3}{8}[sin2(C-A)+sin2(B-A)][/TEX]
Tương tự với 2 biểu thức còn lại sau đó cộng vế.