c/m bất đẳng thức khó

E

eye_smile

2. AD Schwarz, có:
$\dfrac{{(a+b)^2}}{c}+\dfrac{{(b+c)^2}}{a}+\dfrac{{(a+c)^2}}{b}$ \geq $\dfrac{{(a+b+b+c+c+a)^2}}{a+b+c}=4(a+b+c)$
 
E

eye_smile

1.Có:
${(a+b+c)^2}$ \geq $4(a+b)c$
\Rightarrow ${(a+b)^2}{(a+b+c)^2}$ \geq $16abc(a+b)$
\Leftrightarrow $16{(a+b)^2}$ \geq $16abc(a+b)$
\Leftrightarrow $a+b$ \geq $abc$
TT, có: $b+c$ \geq $abc$
$a+c$ \geq $abc$
Suy ra đpcm
 
Top Bottom