a) ĐK: $x\neq \pm 1$
$A=\left [\dfrac{(1-x)(1+x+x^2)}{1-x}-x \right ]:\dfrac{1-x^2}{(1-x)-x^2(1-x)}
\\=(1+x+x^2-x):\dfrac{1-x^2}{(1-x)(1-x^2)}=(x^2+1):\dfrac{1}{1-x}
\\=(x^2+1)(1-x)$
$b)x=-1\dfrac{2}{3}=\dfrac{-5}{3}\Rightarrow A=(\dfrac{25}{9}+1)(1+\dfrac{5}{3})=\dfrac{34}{9}.\dfrac{8}{3}=\dfrac{272}{27}$
$c)A>0\Leftrightarrow (x^2+1)(1-x)>0\Leftrightarrow 1-x>0\Leftrightarrow x<1$ (vì $x^2+1>0 \ \forall \ x$)