K
kissofdead


Chứng minh rằng:
(1+\frac{a}{b})^m+(1+ b/a)^m > 2^(m+1) (a,b>0; m thuộc Z+)
(x^6+y^4)/4\geq(3.x^2.y^3)-16 (x,y>0)
2a^4 + (1/1+a^2)\geq(3a^2)-1
xyz\geq64(x-1)(y-1)(z-1) (x,y,z>1; x+y+z=4)
[ab/(a+b)] + [bc/(b+c)] + [ca/(c+a)]\leq(a+b+c/2) (a,b,c>0)
[1/(a^3+b^3+abc)] + [1/(b^3+c^3+abc)] + [1/(c^3+a^3+abc)]<1/abc
(1+\frac{a}{b})^m+(1+ b/a)^m > 2^(m+1) (a,b>0; m thuộc Z+)
(x^6+y^4)/4\geq(3.x^2.y^3)-16 (x,y>0)
2a^4 + (1/1+a^2)\geq(3a^2)-1
xyz\geq64(x-1)(y-1)(z-1) (x,y,z>1; x+y+z=4)
[ab/(a+b)] + [bc/(b+c)] + [ca/(c+a)]\leq(a+b+c/2) (a,b,c>0)
[1/(a^3+b^3+abc)] + [1/(b^3+c^3+abc)] + [1/(c^3+a^3+abc)]<1/abc
Last edited by a moderator: