[tex](xy+yz+zx)^2\geq 3xyz(x+y+z)=3(x+y+z)\Rightarrow \frac{1}{x+y+z}\geq \frac{3}{(xy+yz+zx)^2}[/tex]
[tex]\Rightarrow P\geq \frac{3}{(xy+yz+zx)^2}-\frac{2}{xy+yz+zx}=3\left ( \frac{1}{xy+yz+zx}-\frac{1}{3} \right )^2-\frac{1}{3}\geq -\frac{1}{3}[/tex]