1.
.
b. Cho x, y, z > 0 thoả x + y + z = 1. Tìm GTLN của biểu thức:
Nhờ mn giúp với ạ ..
a) Áp dụng BĐT Cauchy - Schwarz:
[tex](a^2+b^2+c^2).(1+1+1)\geq (a+b+c)^2\Leftrightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\\ \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{(1+1+1)^2}{2(a+b+c)}=\frac{9}{2(a+b+c)}\\ =>VT\geq \frac{(a+b+c)^2}{3}.\frac{9}{2(a+b+c)}=\frac{3}{2}(a+b+c)[/tex]
Dấu "=" xảy ra <=> a = b = c
b) [tex]P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{x}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1})\\ P\leq 3-\frac{9}{x+y+z+3}(Cauchy-Schwarz)=3-\frac{9}{4}=\frac{3}{4}[/tex]
Dấu "=" xảy ra <=> x = y = z = 1/3