BDT , làm giúp nha

N

nguyenbahiep1

$\frac{x}{x^2+yz} \leq \frac{1}{4}(\frac{1}{x}+\frac{x}{yz}) \\ \\ \Rightarrow VT \leq \frac{1}{4}( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy}) \\ \\ ta-co: x^2+y^2+z^2 = xyz \Rightarrow \frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy} = 1 \\ \\ \Rightarrow VT \leq \frac{1}{4}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+1) = \frac{1}{4}(\frac{xy+yz+zx}{xyz} +1)\\ \\ ta-co: x^2+y^2+z^2 = xyz \geq xy+yz+zx \\ \\\Rightarrow VT \leq \frac{1}{4}(\frac{xyz}{xyz} +1) = \frac{1}{2} \\ \\ x= y = z = 3$
 
Top Bottom