

Cho đường tròn (O;R) đường kính AB và CD vuông góc với nhau, điểm E di động trên cung nhỏ BC. Đoạn thẳng AE cắt đoạn thẳng CD và CB lần lượt tại M và N. Đoạn thẳng ED cắt AB tại H. Chứng minh diện tích tứ giác AMHD không đổi, từ đó suy ra vị trí của điểm E để diện tích tam giác EMH lớn nhất.