Toán 10 Bất phương trình

Thảo luận trong 'Bất đẳng thức. Bất phương trình' bắt đầu bởi quang huy@, 1 Tháng mười 2018.

Lượt xem: 166

  1. quang huy@

    quang huy@ Học sinh mới Thành viên

    Bài viết:
    12
    Điểm thành tích:
    16
    Nơi ở:
    Thanh Hóa
    Trường học/Cơ quan:
    thpt tĩnh gia 1
    Sở hữu bí kíp ĐỖ ĐẠI HỌC ít nhất 24đ - Đặt chỗ ngay!

    Đọc sách & cùng chia sẻ cảm nhận về sách số 2


    Chào bạn mới. Bạn hãy đăng nhập và hỗ trợ thành viên môn học bạn học tốt. Cộng đồng sẽ hỗ trợ bạn CHÂN THÀNH khi bạn cần trợ giúp. Đừng chỉ nghĩ cho riêng mình. Hãy cho đi để cuộc sống này ý nghĩa hơn bạn nhé. Yêu thương!

    cho bất phương trình:
    (x^2+2)^2 + m >= x.căn(x^2+4) + 1
    tìm m để bpt có nghiệm trên đoạn từ 0 cho đến 1
     
  2. huythong1711.hust

    huythong1711.hust Cựu Phó nhóm Toán Thành viên

    Bài viết:
    666
    Điểm thành tích:
    111
    Nơi ở:
    Nghệ An
    Trường học/Cơ quan:
    BK Hà Nội

    Ta có: [tex](x^2+2)^2-x\sqrt{x^2+4}-1\geqslant -m[/tex]
    Đặt [tex]f(x) =(x^2+2)^2-x\sqrt{x^2+4}-1[/tex]. Để bpt có nghiệm trên [0;1] thì [tex]m\leq min_{f(x)}[/tex]
    Dễ thấy [tex]min_{f(x)}[/tex] trên [0;1] = 2.75 Vậy m[tex]\leq 2.75[/tex]
     
Chú ý: Trả lời bài viết tuân thủ NỘI QUY. Xin cảm ơn!

Draft saved Draft deleted

CHIA SẺ TRANG NÀY

-->