[tex]a^{4}+b^{4}>=ab(a^{2}+b^{2})[/tex]
[tex]<=>a^{4}+b^{4}\geq a^{3}b+ab^{3}[/tex]
[tex]<=>a^{4}-a^{3}b-ab^{3}+b^{4}\geq 0[/tex]
[tex]<=>a^{3}(a-b)-b^{3}(a-b)\geq 0[/tex]
[tex]<=>(a-b)(a^{3}-b^{3})\geq 0[/tex]
[tex]<=>(a-b)(a-b)(a^{2}+ab+b^{2})\geq 0[/tex]
[tex]<=>(a-b)^{2}(a^{2}+ab+b^{2})\geq 0[/tex]
[tex]<=>a^{4}+b^{4}\geq ab(a^{2}+b^{2}) (dpcm)[/tex]