yeunplvl
[imath]x^2+1\ge 2x[/imath]
Suy ra [imath]P\le \dfrac{x}{2x+2y+3}+\dfrac{y}{2y+2z+3}+\dfrac{z}{2z+2x+3}[/imath]
[imath]=\dfrac{3}2-\dfrac{1}2(\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{x+z+1})[/imath]
[imath]\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{x+z+1}=\dfrac{(y+1)^2}{(x+y+1)(y+1)}+\dfrac{(z+1)^2}{(y+z+1)(z+1)}+\dfrac{(x+1)^2}{(x+z+1)(x+1)}[/imath]
[imath]\ge \dfrac{(x+y+z+3)^2}{(x+y+1)(y+1)+(y+z+1)(z+1)+(x+z+1)(x+1)}[/imath]
[imath](x+y+1)(y+1)+(y+z+1)(z+1)+(x+z+1)(x+1)=x^2+y^2+z^2+xy+yz+xz+3(x+y+z)+3[/imath]
[imath]=\dfrac{1}2(x^2+y^2+z^2)+\dfrac{9}2+xy+yz+xz+3(x+y+z)=\dfrac{1}2(x+y+z+3)^2[/imath]
Suy ra [imath]\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{x+z+1}\ge 2[/imath]
Vậy [imath]P\le \dfrac{1}2[/imath]
Dấu "=" xảy ra khi [imath]x=y=z=1[/imath]
Có gì khúc mắc em hỏi lại nha
Ngoài ra, em xem thêm tại
[Lý thuyết] Chuyên đề HSG : Bất đẳng thức