Toán 9 Bất đẳng thức

kido2006

Cựu TMod Toán
Thành viên
26 Tháng một 2018
1,693
2
2,653
401
Bắc Ninh
THPT Chuyên Bắc Ninh
a, 1+1a6(1a2)2(1a)211a1211a1+\sum \frac{1}{a}\geq 6(\sum \frac{1}{a^2})\geq 2(\sum \frac{1}{a})^2\Rightarrow 1\geq \sum \frac{1}{a}\geq \frac{-1}{2}\Rightarrow 1\geq \sum \frac{1}{a}
110a+b+c=1144.12210a+b+c1144((10a+1b+1c))=1144.12a112\sum \frac{1}{10a+b+c}=\frac{1}{144}.\sum \frac{12^2}{10a+b+c}\leq \frac{1}{144}(\sum (\frac{10}{a}+\frac{1}{b}+\frac{1}{c}))=\frac{1}{144}.\sum \frac{12}{a}\leq \frac{1}{12}

b,Có abc=a+b+c1ab=1abc=a+b+c\Rightarrow \sum \frac{1}{ab}=1
Đặt 1a=x;1b=y;1c=z\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z xy=1\Rightarrow \sum xy=1
C/m334bca(1+bc)=1a1bc+1=xyz+1=A\bullet C/m\frac{3\sqrt{3}}{4}\leq \sum \frac{bc}{a(1+bc)}=\sum \frac{\frac{1}{a}}{\frac{1}{bc}+1}=\sum \frac{x}{yz+1}=A
A=xyz+1=x2xyz+xCS(x+y+z)23xyz+x+y+zAMGM(x+y+z)2(xy+yz+zx)2x+y+z+x+y+zA=\sum \frac{x}{yz+1}=\sum \frac{x^2}{xyz+x}\geq ^{C-S}\frac{(x+y+z)^2}{3xyz+x+y+z}\geq ^{AM-GM}\frac{(x+y+z)^2}{\frac{(xy+yz+zx)^2}{x+y+z}+x+y+z}
=(x+y+z)31+(x+y+z)2334=\frac{(x+y+z)^3}{1+(x+y+z)^2}\geq \frac{3\sqrt{3}}{4}
Hiển nhiên đúng do biến đổi tương đương
C/m:bca(1+bc)a+b+c4\bullet C/m:\sum \frac{bc}{a(1+bc)}\leq \frac{a+b+c}{4}
bca(1+bc)=bca+abc=bca+a+b+cAMGM14(bca+b+bca+c)=a+b+c4\sum \frac{bc}{a(1+bc)}=\sum \frac{bc}{a+abc}=\sum \frac{bc}{a+a+b+c}\leq ^{AM-GM} \frac{1}{4}\sum (\frac{bc}{a+b}+\frac{bc}{a+c})=\frac{a+b+c}{4}
 
Last edited:
Top Bottom