Chia 2 vế cho abc ta có: [tex](1+\frac{bc}{a^2})(1+\frac{ca}{b^2})(1+\frac{ab}{c^2})\geq 4\sqrt[3]{(1+\frac{b^3}{a^3})(1+\frac{c^3}{b^3})(1+\frac{a^3}{c^3})}[/tex] (1)
Đặt [tex](\frac{bc}{a^2},\frac{ac}{b^2},\frac{ab}{c^2})=(x,y,z)[/tex], (1) trở thành:
[tex](1+x)(1+y)(1+z)\geq 4\sqrt[3]{(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})}[/tex]
Lại có: [tex]xyz=1\Rightarrow (1)\Leftrightarrow 2+xy+yz+zx+x+y+z\geq 4\sqrt[3]{(x+y)(y+z)(z+x)}[/tex]
Đặt [tex]p=a+b+c,q=ab+bc+ca,r=abc=1[/tex]
[tex](1)\Leftrightarrow p+q+2\geq 4\sqrt[3]{pq-r}=4\sqrt[3]{pq-1}\Leftrightarrow (p+q+2)^3\geq 64(pq-1)\Leftrightarrow p^3+q^3+8+3(p+q)(p+2)(q+2)\geq 64(pq-1)\Leftrightarrow p^3+q^3+8+3(p+q)[pq+2(p+q)+4]-64pq+64\geq 0\Leftrightarrow p^3+q^3+72+3pq(p+q)+6(p+q)^2+12(p+q)-64pq\geq 0[/tex]
Mà [tex]p^3+q^3\geq pq(p+q),6(p+q)^2\geq 24pq[/tex] nên ta cần chứng minh [tex]72+4pq(p+q)+12(p+q)-40pq\geq 0\Leftrightarrow 18+pq(p+q)+3(p+q)-10pq\geq 0[/tex]
Lại có: [tex]pq(p+q)\geq 2pq\sqrt{pq}=2(\sqrt{pq})^3,p+q\geq 2\sqrt{pq}[/tex] nên ta chỉ cần chứng minh [tex]2(\sqrt{pq})^3-10(\sqrt{pq})^2+6\sqrt{pq}+18\geq 0[/tex](2)
Đặt [tex]\sqrt{pq}=t\geq 0[/tex] (2) trở thành [tex]2t^3-10t^2+6t+18\geq 0\Leftrightarrow 2(t-3)^2(t+1)\geq 0[/tex](luôn đúng)
Vậy ta có đpcm.