Ta có: [tex]\sqrt{\frac{ab}{ab+c}}=\sqrt{\frac{ab}{ab+c(a+b+c)}}=\sqrt{\frac{ab}{ab+ac+bc+c^2}}=\sqrt{\frac{ab}{(a+c)(b+c)}}=\sqrt{\frac{a}{a+c}}.\sqrt{\frac{b}{b+c}}\leq \frac{1}{2}(\frac{a}{a+c}+\frac{b}{b+c})[/tex]
Tương tự ta cũng có: [tex]\sqrt{\frac{bc}{a+bc}}\leq \frac{1}{2}(\frac{b}{a+b}+\frac{c}{a+c});\sqrt{\frac{ca}{b+ac}}\leq \frac{1}{2}(\frac{c}{c+b}+\frac{a}{a+b})[/tex]
[tex]\Rightarrow \sqrt{\frac{ab}{ab+c}}+\sqrt{\frac{bc}{bc+a}}+\sqrt{\frac{ca}{ca+b}}\leq\frac{1}{2}(\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{b+c})=\frac{1}{2}.3=\frac{3}{2}(đpcm)[/tex]