Đặt p=x+y+z,q=xy+yz+zx,r=xyz
Ta thấy: (x+y−z)(y+z−x)≤(2x+y−z+y+z−x)2=(22y)2=y2
Tương tự thì ta có:(x+y−z)(x−y+z)≤x2,(y+z−x)(x+z−y)≤z2
Nhân vế theo vế ta có:(x+y−z)2(y+z−x)2(x+z−y)2≤x2y2z2⇒(x+y−z)(y+z−x)(x+z−y)≤xyz⇒xyz−(x+y−z)(y+z−x)(x+z−y)≥0⇒x3−x2y−x2z−xy2+3xyz−xz2+y3−y2z−yz2+z3≥0⇒x3+y3+z3+3xyz≥xy(x+y)+yz(y+z)+zx(z+x)(1)
Lại có:(x+y)(y+z)(z+x)+xyz=(x+y+z)(xy+yz+zx)=pq⇒(x+y)(y+z)(z+x)=pq−r;xy(x+y)+yz(y+z)+zx(z+x)+3xyz=(x+y+z)(xy+yz+zx)=pq⇒xy(x+y)+yz(y+z)+zx(z+x)=pq−3r;x3+y3+z3=(x+y+z)3−3(x+y)(y+z)(z+x)=p3−3(pq−r)=p3−3pq+3r
BĐT (1) trở thành:p3−3pq+3r+3r≥pq−3r⇒p3−4pq+9r≥0
Mà p=x+y+z=1⇒1−4q+9r≥0⇒9r≥4q−1⇒r≥94q−1⇒2r≥98q−2⇒xy+yz+zx−2xyz=q−2r≤q−98q−2=9q+2=9xy+yz+zx+2≤93(x+y+z)2+2=931+2=937=277