Toán 8 Bất đẳng thức

kido2006

Cựu TMod Toán
Thành viên
26 Tháng một 2018
1,693
2
2,653
401
Bắc Ninh
THPT Chuyên Bắc Ninh
  • Like
Reactions: ankhongu

7 1 2 5

Cựu TMod Toán
Thành viên
19 Tháng một 2019
6,871
11,479
1,141
Hà Tĩnh
THPT Chuyên Hà Tĩnh
Đặt p=x+y+z,q=xy+yz+zx,r=xyzp=x+y+z,q=xy+yz+zx,r=xyz
Ta thấy: (x+yz)(y+zx)(x+yz+y+zx2)2=(2y2)2=y2(x+y-z)(y+z-x)\leq (\frac{x+y-z+y+z-x}{2})^2=(\frac{2y}{2})^2=y^2
Tương tự thì ta có:(x+yz)(xy+z)x2,(y+zx)(x+zy)z2(x+y-z)(x-y+z)\leq x^2,(y+z-x)(x+z-y)\leq z^2
Nhân vế theo vế ta có:(x+yz)2(y+zx)2(x+zy)2x2y2z2(x+yz)(y+zx)(x+zy)xyzxyz(x+yz)(y+zx)(x+zy)0x3x2yx2zxy2+3xyzxz2+y3y2zyz2+z30x3+y3+z3+3xyzxy(x+y)+yz(y+z)+zx(z+x)(1)(x+y-z)^2(y+z-x)^2(x+z-y)^2\leq x^2y^2z^2\Rightarrow (x+y-z)(y+z-x)(x+z-y)\leq xyz\Rightarrow xyz-(x+y-z)(y+z-x)(x+z-y)\geq 0\Rightarrow x^3 - x^2 y - x^2 z - x y^2 + 3 x y z - x z^2 + y^3 - y^2 z - y z^2 + z^3\geq 0\Rightarrow x^3+y^3+z^3+3xyz\geq xy(x+y)+yz(y+z)+zx(z+x)(1)
Lại có:(x+y)(y+z)(z+x)+xyz=(x+y+z)(xy+yz+zx)=pq(x+y)(y+z)(z+x)=pqr;xy(x+y)+yz(y+z)+zx(z+x)+3xyz=(x+y+z)(xy+yz+zx)=pqxy(x+y)+yz(y+z)+zx(z+x)=pq3r;x3+y3+z3=(x+y+z)33(x+y)(y+z)(z+x)=p33(pqr)=p33pq+3r(x+y)(y+z)(z+x)+xyz=(x+y+z)(xy+yz+zx)=pq\Rightarrow (x+y)(y+z)(z+x)=pq-r;xy(x+y)+yz(y+z)+zx(z+x)+3xyz=(x+y+z)(xy+yz+zx)=pq\Rightarrow xy(x+y)+yz(y+z)+zx(z+x)=pq-3r;x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(z+x)=p^3-3(pq-r)=p^3-3pq+3r
BĐT (1) trở thành:p33pq+3r+3rpq3rp34pq+9r0p^3-3pq+3r+3r\geq pq-3r\Rightarrow p^3-4pq+9r\geq 0
p=x+y+z=114q+9r09r4q1r4q192r8q29xy+yz+zx2xyz=q2rq8q29=q+29=xy+yz+zx+29(x+y+z)23+29=13+29=739=727p=x+y+z=1\Rightarrow 1-4q+9r\geq 0\Rightarrow 9r\geq 4q-1\Rightarrow r\geq \frac{4q-1}{9}\Rightarrow 2r\geq \frac{8q-2}{9}\Rightarrow xy+yz+zx-2xyz=q-2r\leq q-\frac{8q-2}{9}=\frac{q+2}{9}=\frac{xy+yz+zx+2}{9}\leq \frac{\frac{(x+y+z)^2}{3}+2}{9}=\frac{\frac{1}{3}+2}{9}=\frac{\frac{7}{3}}{9}=\frac{7}{27}
 
Top Bottom