Cho a,b,c>0 và a+b+c=1. CM: [tex]\sqrt{a^{2}+\frac{1}{a^{2}}}+\sqrt{b^{2}+\frac{1}{b^{2}}}+\sqrt{c^{2}+\frac{1}{c^{2}}}\geq \sqrt{82}[/tex]
Ta có BĐT: [tex]\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}[/tex] khá quen thuộc nên mình không chứng minh lại
Theo BĐT Bunykovsky ta có:
[tex](1^2+9^2)\left ( a^2+\frac{1}{a^2} \right )\geq\left ( a+\frac{9}{a} \right )^2\\\Rightarrow \sqrt{a^2+\frac{1}{a^2} }\geq \frac{1}{\sqrt{82}}.\left ( a+\frac{9}{a}\right )[/tex]
Tương tự...
Suy ra [tex]\sqrt{a^{2}+\frac{1}{a^{2}}}+\sqrt{b^{2}+\frac{1}{b^{2}}}+\sqrt{c^{2}+\frac{1}{c^{2}}}\geq \frac{1}{\sqrt{82}}\left ( a+\frac{9}{a}+b+\frac{9}{b}+c+\frac{9}{c} \right )\geq \frac{1}{\sqrt{82}}\left ( a+b+c+\frac{81}{a+b+c} \right )=\frac{1}{\sqrt{82}}.82=\sqrt{82}[/tex]
Dấu = xảy ra khi [tex]a=b=c=\frac{1}{3}[/tex]