[tex](x+y)^{2}=x^{2}+y^{2}+2xy=1+2xy\geq 4xy\Leftrightarrow xy\geq \frac{1}{2}[/tex]
[tex]P=x+\frac{1}{x}+y+\frac{1}{y}=x+\frac{x^{2}+y^{2}}{x}+y+\frac{x^{2}+y^{2}}{y}=2(x+y)+\frac{x^{2}}{y}+\frac{y^{2}}{x}\geq 2(x+y)+\frac{(x+y)^{2}}{x+y}=3(x+y)\geq 6\sqrt{xy}\geq 3\sqrt{2}[/tex]
Dấu "=" xảy ra [tex]\Leftrightarrow x=y=\frac{\sqrt{2}}{2}[/tex]