View attachment 53265 Giúp mình với các bạn!!!
+)Xét bài toán phụ: Với x,y,z>0 ta luôn có: ( x + y + z ) 3 ≤ 9 ( x 3 + y 3 + z 3 ) (x+y+z)^{3}\leq 9(x^{3}+y^{3}+z^{3}) ( x + y + z ) 3 ≤ 9 ( x 3 + y 3 + z 3 )
Thật vậy:
Cách 1:
Áp dụng BĐT AM-GM ta có:
x 3 x 3 + y 3 + z 3 + 1 3 + 1 3 ≥ 3 x 3 x 3 + y 3 + z 3 . 1 3 . 1 3 3 = 3 x 9 ( x 3 + y 3 + z 3 ) 3 \frac{x^{3}}{x^{3}+y^{3}+z^{3}}+\frac{1}{3}+\frac{1}{3}\geq 3\sqrt[3]{\frac{x^{3}}{x^{3}+y^{3}+z^{3}}.\frac{1}{3}.\frac{1}{3}}=\frac{3x}{\sqrt[3]{9(x^{3}+y^{3}+z^{3})}} x 3 + y 3 + z 3 x 3 + 3 1 + 3 1 ≥ 3 3 x 3 + y 3 + z 3 x 3 . 3 1 . 3 1 = 3 9 ( x 3 + y 3 + z 3 ) 3 x
Tương tự:
y 3 x 3 + y 3 + z 3 + 1 3 + 1 3 ≥ 3 y 9 ( x 3 + y 3 + z 3 ) 3 \frac{y^{3}}{x^{3}+y^{3}+z^{3}}+\frac{1}{3}+\frac{1}{3}\geq \frac{3y}{\sqrt[3]{9(x^{3}+y^{3}+z^{3})}} x 3 + y 3 + z 3 y 3 + 3 1 + 3 1 ≥ 3 9 ( x 3 + y 3 + z 3 ) 3 y
z 3 x 3 + y 3 + z 3 + 1 3 + 1 3 ≥ 3 z 9 ( x 3 + y 3 + z 3 ) 3 \frac{z^{3}}{x^{3}+y^{3}+z^{3}}+\frac{1}{3}+\frac{1}{3}\geq \frac{3z}{\sqrt[3]{9(x^{3}+y^{3}+z^{3})}} x 3 + y 3 + z 3 z 3 + 3 1 + 3 1 ≥ 3 9 ( x 3 + y 3 + z 3 ) 3 z
Cộng vế với vế 3 BĐT trên được:
3 ≥ 3 ( x + y + z ) 9 ( x 3 + y 3 + z 3 ) 3 ⇔ x + y + z ≤ 9 ( x 3 + y 3 + z 3 ) 3 ⇔ ( x + y + z ) 3 ≤ 9 ( x 3 + y 3 + z 3 ) 3\geq \frac{3(x+y+z)}{\sqrt[3]{9(x^{3}+y^{3}+z^{3})}}\Leftrightarrow x+y+z\leq \sqrt[3]{9(x^{3}+y^{3}+z^{3})}\Leftrightarrow (x+y+z)^{3}\leq 9(x^{3}+y^{3}+z^{3}) 3 ≥ 3 9 ( x 3 + y 3 + z 3 ) 3 ( x + y + z ) ⇔ x + y + z ≤ 3 9 ( x 3 + y 3 + z 3 ) ⇔ ( x + y + z ) 3 ≤ 9 ( x 3 + y 3 + z 3 ) (đpcm)
Dấu "=" xảy ra <=> x=y=z
Cách 2:
Áp dụng BĐT Holder ta có:
( x 3 + y 3 + z 3 ) ( 1 + 1 + 1 ) ( 1 + 1 + 1 ) ≥ ( x + y + z ) 3 ⇔ 9 ( x 3 + y 3 + z 3 ) ≥ ( x + y + z ) 3 (x^{3}+y^{3}+z^{3})(1+1+1)(1+1+1)\geq (x+y+z)^{3}\Leftrightarrow 9(x^{3}+y^{3}+z^{3})\geq (x+y+z)^{3} ( x 3 + y 3 + z 3 ) ( 1 + 1 + 1 ) ( 1 + 1 + 1 ) ≥ ( x + y + z ) 3 ⇔ 9 ( x 3 + y 3 + z 3 ) ≥ ( x + y + z ) 3
Dấu "=" xảy ra <=> x=y=z
+) Trở lại bài toán chính
Áp dụng bài toán phụ ta có:
( a + 2 b 3 + b + 2 c 3 + c + 2 a 3 ) 3 ≤ 9 ( a + 2 b + b + 2 c + c + 2 a ) = 9.3 ( a + b + c ) = 81 ⇒ a + 2 b 3 + b + 2 c 3 + c + 2 a 3 ≤ 3 3 3 (\sqrt[3]{a+2b}+\sqrt[3]{b+2c}+\sqrt[3]{c+2a})^{3}\leq 9(a+2b+b+2c+c+2a)=9.3(a+b+c)=81\Rightarrow \sqrt[3]{a+2b}+\sqrt[3]{b+2c}+\sqrt[3]{c+2a}\leq 3\sqrt[3]{3} ( 3 a + 2 b + 3 b + 2 c + 3 c + 2 a ) 3 ≤ 9 ( a + 2 b + b + 2 c + c + 2 a ) = 9 . 3 ( a + b + c ) = 8 1 ⇒ 3 a + 2 b + 3 b + 2 c + 3 c + 2 a ≤ 3 3 3
Dấu "=" xảy ra <=> a=b=c=1