cmr nếu a,b > 0 thì a/căn b + b/căn a >= căn a+ căn b
Ta có:
[tex]\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}-(\sqrt{a})+\sqrt{b})=\frac{a\sqrt{a}+b\sqrt{b}-\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{ab}}= \frac{(\sqrt{a}+\sqrt{b})(a+b-\sqrt{ab})-\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{ab}}= \frac{(\sqrt{a}+\sqrt{b})(a+b-2\sqrt{ab})}{\sqrt{ab}}=\frac{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})^2}{\sqrt{ab}}\geq0[/TEX]
(luôn đúng)
Vậy suy ra đpcm