T
tiendung_1999


1.|a+b+c| \leq |a| + |b| + |c|
2.|a+b| < |1+ab|
3. $\dfrac{a+b+c}{3\sqrt{3}}$ \geq $\dfrac{ab+bc+ca}{\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}}$
4.$\dfrac{1}{3}$ \leq $\dfrac{a^2-2a+4}{a^2+2a+4}$ \leq 3
5.$a^4+b^4+c^4$ \geq $abc(a+b+c)$
2.|a+b| < |1+ab|
3. $\dfrac{a+b+c}{3\sqrt{3}}$ \geq $\dfrac{ab+bc+ca}{\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}}$
4.$\dfrac{1}{3}$ \leq $\dfrac{a^2-2a+4}{a^2+2a+4}$ \leq 3
5.$a^4+b^4+c^4$ \geq $abc(a+b+c)$