Đặt $(x,y,z)=(\frac{a}{b},\frac{b}{c},\frac{c}{a})$.
[tex]P=\frac{1}{(1+x)^4}+\frac{1}{(1+y)^4}+\frac{1}{(1+z)^4}\geq \frac{1}{3}[\frac{1}{(1+x)^2}+\frac{1}{(1+y)^2}+\frac{1}{(1+z)^2}]^2[/tex]
[tex]P\geq \frac{1}{3}[\frac{1}{(1+x)^2}+\frac{1}{(1+y)^2}+\frac{1}{(1+z)^2}]^2[/tex]
Theo nguyên lí Dirichlet, ta có được điều sau
$(x-1)(y-1)\geq 0\Rightarrow x+y\leq xy+1$
$\frac{1}{(1+x)^{2}}+\frac{1}{(1+y)^{2}}\geq \frac{1}{1+xy}=\frac{z}{z+1}$
$\Rightarrow \frac{1}{(1+x)^{2}}+\frac{1}{(1+y)^{2}}+\frac{1}{(1+z)^{2}}\geq \frac{z}{z+1}+\frac{1}{(1+z)^{2}}$
$\frac{z}{z+1}+\frac{1}{(1+z)^{2}}-\frac{3}{4}=\frac{(z-1)^{2}}{(z+1)^{2}}\geq 0\Rightarrow \frac{z}{z+1}+\frac{1}{(1+z)^{2}}\geq \frac{3}{4}$
$\Rightarrow \frac{1}{(1+x)^{2}}+\frac{1}{(1+y)^{2}}+\frac{1}{(1+z)^{2}}\geq \frac{3}{4}$
Suy ra GTNN của P là [tex]\frac{1}{16}\Leftrightarrow a=b=c[/tex]