C
cactus123


c/m tam giác ABC có:
a, sinA + sinB +sinC = 4cosA/2 cosB/2 cosC/2
b, sinA + sinB - SinC = 4sinA/2 sinB/2 cosC/2
c, sin^2 A + sin^2 B +sin^2 C = 2 + 2cosAcosBcosC
d, sin^2 A - sin^2 B - sin^2 C = -2cosAsinBsinC
e, sin2A + sin2B + sin2C = 4sinAsinBsinC
f, sin^2 A/2 + sin^2 B/2 + sin^2 C/2 = 1- 2sinA/2 sinB/2 sinC/2
g, sin^2 2A + sin^2 2B +sin^2 2C = 2- 2cos2Acos2Bcos2C
h, cosA +cosB + cosC= 1+ 4sinA/2 sinB/2 sinC/2
i, cosA +cosB - cosC =-1 +4cosA/2 cosB/2 sinC/2
j, cos2A + cos2B + cos2C = -1- 4cosAcosBcosC
k, cos2A + cos2B - cos2C = 1 - 4sinAsinBsinC
l, cos^2 A +cos^2 B + cos^2 C = 1- 2cosAcosBcosC
m, cos^2 2A +cos^2 2B + cos^2 2C = 1+ 2cos2Acos2Bcos2C
n, bcosB + ccosC = acos(B-C)
o, acosA + bcosB + ccosC = 2S/R
p, bc cosA + ca cosB + ab cosC = 1/2 (a^2 + b^2 + c^2)
q, (a^2 - b^2)/ c^2 = sin(A -B)/sinC
r, S = 2R^2 sinAsinBsinC
tạm thế đã.
ai giải hết tớ xin tôn làm sư fụ
a, sinA + sinB +sinC = 4cosA/2 cosB/2 cosC/2
b, sinA + sinB - SinC = 4sinA/2 sinB/2 cosC/2
c, sin^2 A + sin^2 B +sin^2 C = 2 + 2cosAcosBcosC
d, sin^2 A - sin^2 B - sin^2 C = -2cosAsinBsinC
e, sin2A + sin2B + sin2C = 4sinAsinBsinC
f, sin^2 A/2 + sin^2 B/2 + sin^2 C/2 = 1- 2sinA/2 sinB/2 sinC/2
g, sin^2 2A + sin^2 2B +sin^2 2C = 2- 2cos2Acos2Bcos2C
h, cosA +cosB + cosC= 1+ 4sinA/2 sinB/2 sinC/2
i, cosA +cosB - cosC =-1 +4cosA/2 cosB/2 sinC/2
j, cos2A + cos2B + cos2C = -1- 4cosAcosBcosC
k, cos2A + cos2B - cos2C = 1 - 4sinAsinBsinC
l, cos^2 A +cos^2 B + cos^2 C = 1- 2cosAcosBcosC
m, cos^2 2A +cos^2 2B + cos^2 2C = 1+ 2cos2Acos2Bcos2C
n, bcosB + ccosC = acos(B-C)
o, acosA + bcosB + ccosC = 2S/R
p, bc cosA + ca cosB + ab cosC = 1/2 (a^2 + b^2 + c^2)
q, (a^2 - b^2)/ c^2 = sin(A -B)/sinC
r, S = 2R^2 sinAsinBsinC
tạm thế đã.
ai giải hết tớ xin tôn làm sư fụ