$A(1;1), \ B \left ( x_B ; 3 \right ) , \ C \left ( x_C ; 0 \right )$
$\overrightarrow{AB} = \left ( x_B - 1; 2 \right ); \ \overrightarrow{AC} = \left ( x_C - 1; -1 \right ); \ \overrightarrow{BC} = \left ( x_C - x_B; -3 \right )$
Tam giác $ABC$ đều $\Leftrightarrow
\left\{\begin{matrix}
AB = AC \\ \cos{\left ( \overrightarrow{AB}; \overrightarrow{AC} \right )} = \cos{60^o}
\end{matrix}\right. \\
\Leftrightarrow
\left\{\begin{matrix}
\sqrt{ \left ( x_B - 1 \right ) ^2 + 2^2} = \sqrt{ \left ( x_C - 1 \right ) ^2 + (-1)^2 } \\ \dfrac{\left | \overrightarrow{AB} . \overrightarrow{AC} \right |}{\left | \overrightarrow{AB} \right |. \left | \overrightarrow{AC} \right |}= \dfrac{1}{2}
\end{matrix}\right. \\
\Leftrightarrow
\left\{\begin{matrix}
\left ( x_B - 1 \right ) ^2 + 2^2 = \left ( x_C - 1 \right ) ^2 + (-1)^2 \\ \dfrac{\left ( x_B - 1 \right ) \left ( x_C - 1 \right ) + 2(-1) }{\sqrt{\left ( x_B - 1 \right ) ^2 + 2^2} . \sqrt{ \left ( x_C - 1 \right ) ^2 + (-1)^2 }}= \dfrac{1}{2}
\end{matrix}\right. \\
$