bai toan dai so 7

H

hiendang241

ádfghjkl

ta có $\frac{1}{1+a+ab}$ +$\frac{1}{1+b+bc}$ + $\frac{1}{1+c+ac}$
=$\frac{bc}{bc+1+b}$ +$\frac{1}{1+b+bc}$ +$\frac{ab}{ab+1+a}$
=$\frac{bc}{bc+1+c}$ +$\frac{1}{1+b+bc}$ +$\frac{b}{1+bc+b}$
=$\frac{b+bc+1}{b+bc+1}$
(thay 1=abc \Rightarrow rút gọn)
 
K

khaiproqn81

Để tui chém cách khác:
$\dfrac{a}{ab+a+1} + \dfrac{b}{bc+b+1} + \dfrac{c}{ac+c+1} \\ =\dfrac{a}{ab+a+1} + \dfrac{ab}{abc+ab+a} + \dfrac{abc}{a^2bc + abc + ab} \\ =\dfrac{a+ab+1}{a+ab+1} \\ = 1$
 
Last edited by a moderator:
Top Bottom