[laTEX]I = \int_{1}^{2}( x - \frac{1}{x^3})(ln(x^2+1) - lnx)dx \\ \\ I = \int_{1}^{2}x.ln(x^2+1)dx - \int_{1}^{2}xlnx.dx - \int_{1}^{2}\frac{ln(x^2+1)}{x^3}dx + \int_{1}^{2}\frac{lnx}{x^3}dx = I_1 -I_2-I_3+I_4 \\ \\ I_1: u= ln(x^2+1) \Rightarrow du = \frac{2x}{x^2+1} \\ \\ dv = x \Rightarrow v = \frac{x^2}{2} \\ \\ I_1 = \frac{x^2ln(x^2+1)}{2} \big|_1^2 - \int_{1}^{2}\frac{x^3}{x^2+1}dx \\ \\ I_2: u = lnx \\ \\ dv = x \\ \\ I_3: u = ln(x^2+1) \\ \\ dv = \frac{1}{x^3} \\ \\ I_4: u = lnx \\ \\ dv = \frac{1}{x^3}[/laTEX]