4.
[imath]\lim \limits_{x\to 1^-} f(x)=\lim \limits_{x\to 1^-} -2x=-2[/imath]
[imath]\lim \limits_{x\to 1^+}f(x)=\lim \limits_{x\to 1^+}(\sqrt{x}-3)=-2[/imath]
Vậy [imath]\lim \limits_{x\to 1^-} f(x)=f(-1)=\lim \limits_{x\to 1^+}f(x)[/imath] nên [imath]f(x)[/imath] liên tục tại [imath]x=1[/imath]
[imath]\lim \limits_{x\to 1^-} \dfrac{f(x)-f(1)}{x-1}=\lim \limits_{x\to 1^-}\dfrac{-2x+2}{x-1}=-2[/imath]
[imath]\lim \limits_{x\to 1^+} \dfrac{f(x)-f(1)}{x-1}=\lim \limits_{x\to 1^+}\dfrac{\sqrt{x}-3+2}{x-1}[/imath]
[imath]\lim \limits_{x\to 1^+}\dfrac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}=\lim \limits_{x\to 1^+} \dfrac{1}{\sqrt{x}+1}=\dfrac{1}2[/imath]
Do [imath]\lim \limits_{x\to 1^+}\dfrac{f(x)-f(1)}{x-1}\ne \lim \limits_{x\to 1^-} \dfrac{f(x)-f(1)}{x-1}[/imath] nên [imath]f[/imath] không khả vi tại [imath]x=1[/imath]