\int\limits_{ln2}^{ln3}\frac{e^{2x}}{e^x -1+\sqrt[]{e^x-2}}dx
T thuylinh_436 19 Tháng mười hai 2013 #1 [TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. [TEX]\int\limits_{ln2}^{ln3}\frac{e^{2x}}{e^x -1+\sqrt[]{e^x-2}}dx[/TEX] Last edited by a moderator: 19 Tháng mười hai 2013
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. [TEX]\int\limits_{ln2}^{ln3}\frac{e^{2x}}{e^x -1+\sqrt[]{e^x-2}}dx[/TEX]
N nguyenbahiep1 19 Tháng mười hai 2013 #2 [laTEX]\sqrt{e^x-2} = t \Rightarrow t^2+2 = e^x \Rightarrow 2tdt = e^x.dx \\ \\ I = \int_{0}^{1}\frac{(t^2+2)2t.dt}{t^2+2-1+t} = I = \int_{0}^{1}\frac{(2t^3+4t)dt}{t^2+t+1}[/laTEX] đây là dạng phân thức chia và làm bình thường
[laTEX]\sqrt{e^x-2} = t \Rightarrow t^2+2 = e^x \Rightarrow 2tdt = e^x.dx \\ \\ I = \int_{0}^{1}\frac{(t^2+2)2t.dt}{t^2+2-1+t} = I = \int_{0}^{1}\frac{(2t^3+4t)dt}{t^2+t+1}[/laTEX] đây là dạng phân thức chia và làm bình thường
H hung.nguyengia2013@yahoo.com.vn 28 Tháng mười hai 2013 #3 thuylinh_436 said: [TEX]\int\limits_{ln2}^{ln3}\frac{e^{2x}}{e^x -1+\sqrt[]{e^x-2}}dx[/TEX] Bấm để xem đầy đủ nội dung ... \[I = \int\limits_{\ln 2}^{\ln 3} {\dfrac{{{e^{2x}}}}{{{e^x} - 1 + \sqrt[{}]{{{e^x} - 2}}}}} dx\] \[t = \sqrt[{}]{{{e^x} - 2}} \Rightarrow {e^x} = {t^2} + 2 \Rightarrow {e^{2x}} = {t^4} + 4{t^2} + 4\] \[ \Rightarrow {e^{2x}}dx = ({t^4} + 4{t^2} + 4)dt\] \[x = \ln 2 \Rightarrow t = 0\] \[x = \ln 3 \Rightarrow t = 1\] \[I = \int\limits_0^1 {\dfrac{{({t^4} + 4{t^2} + 4)dt}}{{{t^2} + t + 1}}} = \int\limits_0^1 {({t^2} - t + 4)dt} - \dfrac{3}{2}\int\limits_0^1 {\dfrac{{2tdt}}{{{t^2} - t + 1}}} \] \[{I_2} = \int\limits_0^1 {\dfrac{{2tdt}}{{{t^2} - t + 1}}} = \int\limits_0^1 {\dfrac{{(2t - 1)dt}}{{{t^2} - t + 1}}} + \int\limits_0^1 {\dfrac{{dt}}{{{t^2} - t + 1}}} = \left. {ln\left| {{t^2} - t + 1} \right|} \right|_0^1 + \int\limits_0^1 {\dfrac{{dt}}{{{t^2} - t + 1}}} \] \[ = \int\limits_0^1 {\dfrac{{dt}}{{{{\left( {t - \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}} \] \[t - \dfrac{1}{2} = \dfrac{{\sqrt 3 }}{2}\tan u\]
thuylinh_436 said: [TEX]\int\limits_{ln2}^{ln3}\frac{e^{2x}}{e^x -1+\sqrt[]{e^x-2}}dx[/TEX] Bấm để xem đầy đủ nội dung ... \[I = \int\limits_{\ln 2}^{\ln 3} {\dfrac{{{e^{2x}}}}{{{e^x} - 1 + \sqrt[{}]{{{e^x} - 2}}}}} dx\] \[t = \sqrt[{}]{{{e^x} - 2}} \Rightarrow {e^x} = {t^2} + 2 \Rightarrow {e^{2x}} = {t^4} + 4{t^2} + 4\] \[ \Rightarrow {e^{2x}}dx = ({t^4} + 4{t^2} + 4)dt\] \[x = \ln 2 \Rightarrow t = 0\] \[x = \ln 3 \Rightarrow t = 1\] \[I = \int\limits_0^1 {\dfrac{{({t^4} + 4{t^2} + 4)dt}}{{{t^2} + t + 1}}} = \int\limits_0^1 {({t^2} - t + 4)dt} - \dfrac{3}{2}\int\limits_0^1 {\dfrac{{2tdt}}{{{t^2} - t + 1}}} \] \[{I_2} = \int\limits_0^1 {\dfrac{{2tdt}}{{{t^2} - t + 1}}} = \int\limits_0^1 {\dfrac{{(2t - 1)dt}}{{{t^2} - t + 1}}} + \int\limits_0^1 {\dfrac{{dt}}{{{t^2} - t + 1}}} = \left. {ln\left| {{t^2} - t + 1} \right|} \right|_0^1 + \int\limits_0^1 {\dfrac{{dt}}{{{t^2} - t + 1}}} \] \[ = \int\limits_0^1 {\dfrac{{dt}}{{{{\left( {t - \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}} \] \[t - \dfrac{1}{2} = \dfrac{{\sqrt 3 }}{2}\tan u\]
N nguyenbahiep1 28 Tháng mười hai 2013 #4 hung.nguyengia2013@yahoo.com.vn said: \[I = \int\limits_{\ln 2}^{\ln 3} {\dfrac{{{e^{2x}}}}{{{e^x} - 1 + \sqrt[{}]{{{e^x} - 2}}}}} dx\] \[t = \sqrt[{}]{{{e^x} - 2}} \Rightarrow {e^x} = {t^2} + 2 \Rightarrow {e^{2x}} = {t^4} + 4{t^2} + 4\] \[ \Rightarrow {e^{2x}}dx = ({t^4} + 4{t^2} + 4)dt\] \[x = \ln 2 \Rightarrow t = 0\] \[x = \ln 3 \Rightarrow t = 1\] \[I = \int\limits_0^1 {\dfrac{{({t^4} + 4{t^2} + 4)dt}}{{{t^2} + t + 1}}} = \int\limits_0^1 {({t^2} - t + 4)dt} - \dfrac{3}{2}\int\limits_0^1 {\dfrac{{2tdt}}{{{t^2} - t + 1}}} \] \[{I_2} = \int\limits_0^1 {\dfrac{{2tdt}}{{{t^2} - t + 1}}} = \int\limits_0^1 {\dfrac{{(2t - 1)dt}}{{{t^2} - t + 1}}} + \int\limits_0^1 {\dfrac{{dt}}{{{t^2} - t + 1}}} = \left. {ln\left| {{t^2} - t + 1} \right|} \right|_0^1 + \int\limits_0^1 {\dfrac{{dt}}{{{t^2} - t + 1}}} \] \[ = \int\limits_0^1 {\dfrac{{dt}}{{{{\left( {t - \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}} \] \[t - \dfrac{1}{2} = \dfrac{{\sqrt 3 }}{2}\tan u\] Bấm để xem đầy đủ nội dung ... giải nhầm rồi em ..................................................................................................................
hung.nguyengia2013@yahoo.com.vn said: \[I = \int\limits_{\ln 2}^{\ln 3} {\dfrac{{{e^{2x}}}}{{{e^x} - 1 + \sqrt[{}]{{{e^x} - 2}}}}} dx\] \[t = \sqrt[{}]{{{e^x} - 2}} \Rightarrow {e^x} = {t^2} + 2 \Rightarrow {e^{2x}} = {t^4} + 4{t^2} + 4\] \[ \Rightarrow {e^{2x}}dx = ({t^4} + 4{t^2} + 4)dt\] \[x = \ln 2 \Rightarrow t = 0\] \[x = \ln 3 \Rightarrow t = 1\] \[I = \int\limits_0^1 {\dfrac{{({t^4} + 4{t^2} + 4)dt}}{{{t^2} + t + 1}}} = \int\limits_0^1 {({t^2} - t + 4)dt} - \dfrac{3}{2}\int\limits_0^1 {\dfrac{{2tdt}}{{{t^2} - t + 1}}} \] \[{I_2} = \int\limits_0^1 {\dfrac{{2tdt}}{{{t^2} - t + 1}}} = \int\limits_0^1 {\dfrac{{(2t - 1)dt}}{{{t^2} - t + 1}}} + \int\limits_0^1 {\dfrac{{dt}}{{{t^2} - t + 1}}} = \left. {ln\left| {{t^2} - t + 1} \right|} \right|_0^1 + \int\limits_0^1 {\dfrac{{dt}}{{{t^2} - t + 1}}} \] \[ = \int\limits_0^1 {\dfrac{{dt}}{{{{\left( {t - \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}} \] \[t - \dfrac{1}{2} = \dfrac{{\sqrt 3 }}{2}\tan u\] Bấm để xem đầy đủ nội dung ... giải nhầm rồi em ..................................................................................................................