$A=1983-x^2-3y^2+3xy-10x+14y$
\Leftrightarrow $-(x^2+3y^2-3xy+10x-14y-1983)$
\Leftrightarrow $-[[x^2+\frac{2x(10-3y)}{2}+\frac{(10-3y)^2}{4}]+[3y^2-\frac{(10-3y)^2}{4}-14y-1983]]$
\Leftrightarrow $-[[(x+\frac{10-3y}{2})^2+(3y^2-\frac{9y^2-60y+100}{4}-14y-1983)]]$
\Leftrightarrow $-[[(x+\frac{10-3y}{2})^2+(\frac{12y^2-9y^2}{4}+\frac{60y}{4}-14y-\frac{100}{4}-1983]]$
\Leftrightarrow $-[(x+\frac{10-3y}{2})^2+(\frac{3y^2}{4}+y-2008)]$
\Leftrightarrow $-[(x+\frac{10-3y}{2})^2+\frac{3}{4}(y^2+\frac{4}{3}y+\frac{4}{9}-\frac{24100}{9})]$
\Leftrightarrow $-[(x+\frac{10-3y}{2})^2+\frac{3}{4}(y+\frac{2}{3})^2-\frac{6025}{3}]$ \leq $\frac{6025}{3}$
Vậy Max A=$\frac{6025}{3}$ \Leftrightarrow $x=-6, y=\frac{-2}{3}$