b) Ta có: [tex]\frac{SA}{SK}=\frac{SA}{SB}.\frac{SB}{SK}=\frac{AB}{BK}.\frac{AB}{BK}=\frac{AB^2}{BK^2};\frac{SA}{SK}=\frac{SA}{SC}.\frac{SC}{SK}=\frac{AC}{CK}.\frac{AC}{CK}=\frac{AC^2}{BC^2}[/tex]
Nhân lại ta có: [tex]\frac{SA^2}{SK^2}=\frac{AB^2}{BK^2}.\frac{AC^2}{CK^2}\Rightarrow \frac{SA}{SK}=\frac{AB}{BK}.\frac{AC}{CK}[/tex]
Lại có:
[tex]\frac{JA}{JK}=\frac{JA}{JB}.\frac{JB}{JK}=\frac{AC}{BK}.\frac{AB}{KC} \Rightarrow \frac{SA}{SK}=\frac{JA}{JK}[/tex]
c) [tex]\Delta AFI \sim \Delta AKB \Rightarrow \frac{AF}{AK}=\frac{IF}{BK}[/tex]
Tương tự thì [tex]\frac{AE}{AK}=\frac{EI}{KC} \Rightarrow \frac{IE}{IF}.\frac{BK}{KC}=\frac{AE}{AF}[/tex]
Lại có: [tex]\frac{BK}{AB}=\frac{SB}{SA}=\frac{SC}{SA}=\frac{CK}{AC}\Rightarrow \frac{BK}{CK}=\frac{AB}{AC}=\frac{AE}{AF}\Rightarrow \frac{IE}{IF}=1 \Rightarrow IE=IF[/tex]
d) Áp dụng định lí Menélaus cho tam giác AJC có D, L, E thẳng hàng ta có:
[tex]\frac{LJ}{LA}.\frac{EA}{EC}.\frac{DC}{DJ}=1\Rightarrow \frac{LJ}{LA}=\frac{EC}{EA}.\frac{DJ}{DC}=\frac{EC}{DC}.\frac{DJ}{EA}=\frac{BC}{CA}.\frac{DJ}{EA}[/tex]
Theo định lí Menélaus thì 3 điểm L, M, N thẳng hàng trong tam giác ABJ khi:
[tex]\frac{MJ}{MB}.\frac{NB}{NA}.\frac{LA}{LJ}=1\Leftrightarrow \frac{MJ}{MB}=\frac{LJ}{LA}=\frac{BC}{CA}.\frac{DJ}{EA}\Leftrightarrow \frac{MJ}{DJ}=\frac{BC}{CA}.\frac{BM}{EA}\Leftrightarrow \frac{SM}{AD}=\frac{BC}{CA}.\frac{BC}{2EA}\Leftrightarrow \frac{SM.MO}{AD.MO}=\frac{BC^2}{2AE.AC} \Leftrightarrow \frac{BC^2}{4AD.MO}=\frac{BC^2}{2AE.AC}\Leftrightarrow AD.2MO=AE.AC \Leftrightarrow AD.2MO=AH.AD \Leftrightarrow AH=2MO[/tex](đúng)
Vậy ta có đpcm.