1) A=(x+1)(x−1)x+1−(x−1)(x+x+1)x+2−x+x+1x+1(x≥0;x=1) =(x−1)(x+x+1)x+x+1−x−2−x+1=(x−1)(x+x+1)−x+x =(x−1)(x+x+1)−x(x−1)=x+x+1−x
2) B=(x−1)(x+3)15x−11−(3x−2)(x+3)−(2x+3)(x−1)(x≥0;x=1) =(x−1)(x+3)−5x+7x−2=(x−1)(x+3)(x−1)(2−5x)=x+32−5x
3)
a) ĐK: x≥0;x=1;x=4 Q=(x−2)(x−1)(x−3)(x−1)−(2x−1)(x−2)+x−2=(x−2)(x−1)x−1=x−21
b) Q≥2⇔x−21−2≥0⇔x−25−2x≥0 ⇔{5−2x≥0x−2>0or{5−2x≤0x−2<0 ⇔{x≤425x>4or{x≥425x<4 ⇔4<x≤425
c) Q∈Z⇔x−21∈Z⇔(x−2)∈Ư(1)={±1}⇔x=9 (vì x=1)
4)
a) A=(xyx+y.x+y2+xyx+y):xy(x+y)(x+y)(x+y) =xy2xy+x+y:xyx+y=xy(x+y)2.x+yxy=xyx+y
b) A=xyx+y≥1624xy=42.2=1
Dấu '=' xảy ra khi x=y=4