pt $\iff 27x^3 - 54x^2 - 27x - 153 = 27\sqrt[3]{9(-3x^2+21x+5)}$
$\iff (3x-3)^3 + 27(3x-3) = 9(-3x^2+21x+5) + 27\sqrt[3]{9(-3x^2+21x+5)}$
Đặt $3x-3 = a$ và $\sqrt[3]{9(-3x^2+21x+5)} = b$, pt $\iff a^3 + 27a = b + 27b$
$\iff (a-b)(a^2+ab+b^2+27) = 0$
$\iff a = b$ (do $a^2+ab+b^2+27 = (a+\dfrac12b)^2 + \dfrac{3}4 b^2 + 27 > 0$)
...