2 bài giới hạn khó đây !!

T

tuyn

1. [TEX]L= \lim_{x\to \frac{\pi}{2}} (sinx)^{tanx}[/TEX]
Đặt [TEX]2t= \frac{ \pi}{2}-x[/TEX]
[TEX]x ---> \frac{ \pi}{2} \Rightarrow t --> 0[/TEX]
[TEX]L= \lim_{t \to 0} (cos2t)^{cot2t}= \lim_{t \to 0} [1-2sin^2t]^{cot2t}[/TEX]
[TEX]= \lim_{t \to 0} (1-2sin^2t)^{ -\frac{1}{2sin^2t}. \frac{-2sin^2t.cos2t}{sin2t}}[/TEX]
Do:
[TEX] \lim_{t \to 0} (1-2sin^2t)^{ -\frac{1}{2sin^2t}}=e[/TEX]
[TEX] \lim_{t \to 0} \frac{-2sin^2tcos2t}{sin2t}= \lim_{t \to 0}\frac{-sintcos2t}{cost}=0[/TEX]
Vậy: [TEX]L=e^0=1[/TEX]
2.[TEX]\lim_{x\to \infty } \frac{\sqrt[3]{x^2+1}}{x+1}[/TEX]
[TEX]= \lim_{x \to \infty} \frac{ \sqrt[3]{ \frac{1}{x}+ \frac{1}{x^3}}}{1+ \frac{1}{x}}=0[/TEX]
 
Top Bottom