đề thế này : [TEX]cmr : cosA +\sqrt{2}(cosB+cosC)\leq 2[/TEX]
giải :
<=> [TEX]1-2sin^2\frac{A}{2} +2\sqrt{2}cos(B+C)/2.cos(B-C)/2\leq2[/TEX]
<=>[TEX]2sin^2\frac{A}{2} - 2\sqrt{2}sinA/2cos(B-C)/2+1 \geq[/TEX]
<=>[TEX](2sin^2\frac{A}{2} - 2\sqrt{2}sinA/2cos(B-C)/2 + cos^2\frac{B-C}{2}) +1-cos^2\frac{B-C}{2} \geq0[/TEX]
<=>[TEX] (\sqrt{2}sinA/2-cos(B-C)/2)^2 +1-cos^2\frac{B-C}{2}\geq 0 [/TEX](luôn đúng)
dấu bằng xảy ra <=> [TEX]cos^2\frac{B-C}{2} =1[/TEX]
và[TEX] \sqrt{2}sinA/2=cos(B-C)/2[/TEX]