Giải hệ pt
[tex]\frac{xy}{x+y}=\frac{2}{3}[/tex]
[tex]\frac{yz}{y+z}=\frac{6}{5}[/tex]
[tex]\frac{xz}{x+z}=\frac{3}{4}[/tex]
dễ thấy xyz khác 0
suy ra: hệ [tex]<=> \left\{\begin{matrix} \frac{x+y}{xy}=\frac{3}{2} & \\\\ \frac{y+z}{yz}=\frac{5}{6}& \\\\ \frac{x+z}{xz}=\frac{4}{3} & \end{matrix}\right.\\\\ <=> \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{3}{2} & \\\\ \frac{1}{y}+\frac{1}{z}=\frac{5}{6}& \\\\ \frac{1}{z}+\frac{1}{x}=\frac{4}{3} & \end{matrix}\right.\\\\ => 2.(\frac{1}{x}+\frac{1}{y}+\frac{1}{x})=\frac{9}{6}+\frac{5}{6}+\frac{8}{6}=\frac{22}{6}\\\\ => \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{11}{6}\\\\ =>+, \frac{1}{x}=\frac{11}{6}-\frac{5}{6}=1 => x=1\\\\ =>...[/tex]