Ta có:[tex]S=\sqrt{a^2+\underset{16 số}{\underbrace{\frac{1}{16b^2}+...+\frac{1}{16b^2}}}}+\sqrt{b^2+\underset{16 số}{\underbrace{\frac{1}{16c^2}+...+\frac{1}{16c^2}}}}+\sqrt{c^2+\underset{16 số}{\underbrace{\frac{1}{16a^2}+...+\frac{1}{16a^2}}}}\geq \sqrt{17.\sqrt[17]{a^2.(\frac{1}{16b^2})^{16}}}+\sqrt{17.\sqrt[17]{b^2.(\frac{1}{16c^2})^{16}}}+\sqrt{17.\sqrt[17]{c^2.(\frac{1}{16a^2})^{16}}}[/tex]
[tex]=\sqrt{17}(\sqrt[17]{\frac{a}{16^8.b^{16}}}+\sqrt[17]{\frac{b}{16^8.c^{16}}}+\sqrt[17]{\frac{c}{16^8.a^{16}}})\geq \sqrt{17}.3.\sqrt[3]{\sqrt[17]{\frac{a}{16^8.b^{16}}}.\sqrt[17]{\frac{b}{16^8.c^{16}}}.\sqrt[17]{\frac{c}{16^8.a^{16}}}}=3\sqrt{17}.\sqrt[17]{\frac{1}{16^8.a^5.b^5.c^5}}=3\sqrt{17}.\sqrt[17]{\frac{1}{2^{17}.(2a.2b.2c)^5}}=\frac{3\sqrt{17}}{2.\sqrt[17]{(2a.2b.2c)^5}}\geq \frac{3\sqrt{17}}{2.\sqrt[17]{(\frac{2a+2b+2c}{3})^15}}=\frac{3\sqrt{17}}{2}[/tex]
Dấu "=" xảy ra tại [tex]a=b=c=\frac{1}{2}[/tex]