Ta có:[tex]A=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{x^3+y^3}+\frac{1}{3(x+y)xy}+\frac{2}{xy}\geq \frac{4}{x^3+y^3+3xy(x+y)}+\frac{2}{(\frac{x+y}{2})^2}=\frac{4}{(x+y)^3}+8=4+8=12[/tex]
Dấu "=" xảy ra khi [tex]x=y=\frac{1}{2}[/tex]
Ta có:[tex]A=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{x^3+y^3}+\frac{3}{3xy(x+y)}\geq \frac{(1+\sqrt{3})^2}{x^3+y^3+3xy(x+y)}=\frac{4+2\sqrt{3}}{(x+y)^3}=4+2\sqrt{3}[/tex]
Ta có:[tex]A=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{x^3+y^3}+\frac{3}{3xy(x+y)}\geq \frac{(1+\sqrt{3})^2}{x^3+y^3+3xy(x+y)}=\frac{4+2\sqrt{3}}{(x+y)^3}=4+2\sqrt{3}[/tex]