Cho a,b,c>0 thỏa mãn a+b+c=3
tìm min [tex]a^2+2b^2+3c^2[/tex]
Dùng BĐT Bunhia , có :
[tex](a.1 + \sqrt{2}.b.\frac{1}{\sqrt{2}} + \sqrt{3}.c.\frac{1}{\sqrt{3}})^{2} \leq (a^{2} + 2b^{2} + 3c^{2})(1^{2} + (\frac{1}{\sqrt{2}})^{2} + (\frac{1}{\sqrt{3}})^{2})[/tex]
<-> [tex](a + b + c)^{2} \leq (a^{2} + 2b^{2} + 3c^{2})(1 + \frac{1}{2} + \frac{1}{3})[/tex]
<-> [tex]9 \leq (a^{2} + 2b^{2} + 3c^{2}).\frac{11}{6}[/tex]
<-> [tex]a^{2} + 2b^{2} + 3c^{2} \geq 9.\frac{6}{11} = \frac{54}{11}[/tex]
Dấu "=" <-> [tex]\frac{a}{1} = \frac{\sqrt{2}.b}{\frac{1}{\sqrt{2}}} = \frac{3\sqrt{c}}{\frac{1}{\sqrt{3}}}[/tex]
<-> [tex]a = 2b = 3c[/tex]
<-> [tex]a = \frac{18}{11}, b = \frac{9}{11}, c = \frac{6}{11}[/tex]
Có đúng không thế ạ ?